Precalculus

11-02 Vectors in space

Vectors in 3-D

	$\vec{v} = \langle v_1, v_2, v_3 \rangle$
• To find a vector from the	point (p_1, p_2, p_3) to thepoint (q_1, q_2, q_3)
	$\vec{v} = \langle q_1 - p_1, q_2 - p_2, q_3 - p_3 \rangle$
$\vec{v} = \langle v_1, v_2, v_3 \rangle$ and $\vec{u} = \langle u_1, u_2, u_3 \rangle$,	• (41 P1)42 P2)43 P3)
 Addition 	
 Add corresponding 	
· · · · · · · · · · · · · · · · · · ·	$\vec{v} + \vec{u} = \langle v_1 + u_1, v_2 + u_2, v_3 + u_3 \rangle$
Scalar multiplication	
o	
<u> </u>	$c\vec{v} = \langle cv_1, cv_2, cv_3 \rangle$
Dot Product	$cv = (cv_1, cv_2, cv_3)$
Dorroduct	$\vec{v} \cdot \vec{u} = v_1 u_1 + v_2 u_2 + v_3 u_3$
Magnitude	$v u = v_1 u_1 + v_2 u_2 + v_3 u_3$
- Magintuue	
	$\ \vec{v}\ = \sqrt{v_1^2 + v_2^2 + v_3^2}$
• Unit vector in the direction of \vec{v}	N
	\vec{v}
	$\frac{v}{\ \vec{v}\ }$
Angle between vectors	
Aligie between vectors	$\vec{u} \cdot \vec{v} = \ \vec{u}\ \ \vec{v}\ \cos \theta$
• If $\theta = 90^\circ$ (and $\vec{u} \cdot \vec{v} =$	
• If $\vec{u} = c\vec{v}$, then vectors are	
$\vec{m} = \langle 1, 0, 3 \rangle$ and $\vec{n} = \langle -2, 1, -4 \rangle$	
d <i>m</i>	Find unit vector in direction of \vec{m}
1	
$d \vec{m} + 2\vec{n}$	Find $\vec{m} \cdot \vec{n}$
d the angle between $\overline{\vec{m}}$ and $ec{n}$	
d the angle between $\overline{\vec{m}}$ and $ec{n}$	
d the angle between $\overline{\vec{m}}$ and $ec{n}$	
d the angle between \overrightarrow{m} and \overrightarrow{n}	

Are $\vec{p} = \langle 1, 5, -2 \rangle$ and $\vec{q} = \left\langle -\frac{1}{5}, -1, \frac{2}{5} \right\rangle$ parallel, orthogonal, or neither?

Are P(1, -1, 3), Q(0, 4, -2), and R(6, 13, -5) collinear?